The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167138 G.f.: Sum_{n>=0} A167137(n)^2 * log(1+x)^n/n! where Sum_{n>=0} A167137(n)*log(1+x)^n/n! = g.f. of the partition numbers (A000041). 4
 1, 1, 12, 148, 2523, 48996, 1127354, 29348080, 849632392, 27096593838, 943340417806, 35501579861404, 1434531966551084, 61939404662074706, 2844544965703554566, 138338597978951126666, 7098617731036257970895 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Conjecture: For all integers m > 0, Sum_{n>=0} L(n)^m * log(1+x)^n/n! is an integer series whenever Sum_{n>=0} L(n)*log(1+x)^n/n! is an integer series. LINKS FORMULA a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k)*A167137(k)^2. - Vladeta Jovovic, Nov 08 2009 EXAMPLE G.f.: A(x) = 1 + x + 12*x^2 + 148*x^3 + 2523*x^4 + ... Illustrate A(x) = Sum_{n>=0} A167137(n)^2*log(1+x)^n/n!: A(x) = 1 + log(1+x) + 5^2*log(1+x)^2/2! + 31^2*log(1+x)^3/3! + 257^2*log(1+x)^4/4! + ... where P(x), the partition function of A000041, is generated by: P(x) = 1 + log(1+x) + 5*log(1+x)^2/2! + 31*log(1+x)^3/3! + 257*log(1+x)^4/4! + ... PROG (PARI) {Stirling2(n, k)=if(k<0|k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))} {A167137(n)=sum(k=0, n, numbpart(k)*Stirling2(n, k)*k!)} {a(n)=polcoeff(sum(m=0, n, A167137(m)^2*log(1+x+x*O(x^n))^m/m!), n)} CROSSREFS Cf. A167137, A000041. Sequence in context: A196454 A329013 A350655 * A001406 A057572 A114106 Adjacent sequences: A167135 A167136 A167137 * A167139 A167140 A167141 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 13:51 EST 2023. Contains 359923 sequences. (Running on oeis4.)