login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167141 G.f.: Sum_{n>=0} A004123(n)^2*log(1+x)^n/n! where 1/(1-2x) = Sum_{n>=0} A004123(n)*log(1+x)^n/n!. 1
1, 4, 48, 864, 20880, 632448, 23018688, 978179328, 47529084096, 2598928566336, 157937795847936, 10559489876375040, 770269715428025088, 60876094422772800000, 5181654464327251948032, 472584847824904789910016 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

CONJECTURE: For all integer m>0, Sum_{n>=0} L(n)^m * log(1+x)^n/n! is an integer series whenever Sum_{n>=0} L(n)*log(1+x)^n/n! is an integer series.

In this case, m=2 and L(n) = A004123(n), which is the number of generalized weak orders on n points.

LINKS

Table of n, a(n) for n=0..15.

EXAMPLE

G.f.: A(x) = 1 + 4*x + 48*x^2 + 864*x^3 + 20880*x^4 + 632448*x^5 +...

Illustrate A(x) = Sum_{n>=0} A004123(n)^2 * log(1+x)^n/n!:

A(x) = 1 + 2^2*log(1+x) + 10^2*log(1+x)^2/2! + 74^2*log(1+x)^3/3! + 730^2*log(1+x)^4/4! + 9002^2*log(1+x)^5/5! +...+ A004123(n)^2*log(1+x)^n/n! +...

where the e.g.f. of A004123 is 1/(3 - 2*exp(x)) and thus:

1/(1-2x) = 1 + 2*log(1+x) + 10*log(1+x)^2/2! + 74*log(1+x)^3/3! + 730*log(1+x)^4/4! + 9002*log(1+x)^5/5! +...+ A004123(n)*log(1+x)^n/n! +...

PROG

(PARI) {Stirling2(n, k)=if(k<0|k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}

{A004123(n)=sum(k=0, n, 2^k*Stirling2(n, k)*k!)}

{a(n)=polcoeff(sum(m=0, n, A004123(m)^2*log(1+x+x*O(x^n))^m/m!), n)}

CROSSREFS

Cf. A004123, variants: A167139, A167138, A101370.

Sequence in context: A328183 A047711 A089448 * A322296 A192260 A162676

Adjacent sequences:  A167138 A167139 A167140 * A167142 A167143 A167144

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 08:36 EDT 2019. Contains 328107 sequences. (Running on oeis4.)