

A107055


Integer part of Sum_{k>=0} Sum_{j=0..k} n^j*A107045(k,j)/A107046(k,j).


0



1, 2, 4, 8, 14, 23, 37, 60, 94, 147, 227, 349, 533, 810, 1225, 1847, 2776, 4162, 6224, 9288, 13836, 20575, 30552, 45305, 67100, 99267, 146703, 216602, 319525, 470974, 693685, 1020998, 1501775, 2207604, 3243324, 4762421, 6989521, 10253264
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Limit a(n+1)/a(n) exists and is conjectured to equal exp(exp(1)).


LINKS

Table of n, a(n) for n=1..38.


FORMULA

n^p = Sum_{k=0..n} p^k*Sum_{j=0..k} n^j*A107045(k, j)/A107046(k, j) for all nonnegative integers n and p.


PROG

(PARI) {a(n)=floor(sum(k=0, n+10, sum(j=0, k, n^j*(matrix(k+1, k+1, r, c, if(r>=c, 1.*(r1)^(c1)))^1)[k+1, j+1])))}


CROSSREFS

Cf. A107045/A107046, A107047/A107048 (n=2), A107049/A107050 (n=3), A107051/A107052 (n=4), A107053/A107054 (n=5).
Sequence in context: A089054 A055291 A091773 * A202840 A018153 A101687
Adjacent sequences: A107052 A107053 A107054 * A107056 A107057 A107058


KEYWORD

nonn


AUTHOR

Paul D. Hanna, May 17 2005


STATUS

approved



