login
A327321
Triangular array read by rows: row n shows the coefficients of the polynomial p(x,n) constructed as in Comments; these polynomials form a strong divisibility sequence.
10
1, 1, 3, 7, 18, 27, 5, 21, 27, 27, 61, 300, 630, 540, 405, 91, 549, 1350, 1890, 1215, 729, 547, 3822, 11529, 18900, 19845, 10206, 5103, 205, 1641, 5733, 11529, 14175, 11907, 5103, 2187, 4921, 44280, 177228, 412776, 622566, 612360, 428652, 157464, 59049, 7381
OFFSET
1,3
COMMENTS
Suppose q is a rational number such that the number r = sqrt(q) is irrational. The function (r x + r)^n - (r x - 1/r)^n of x can be represented as k*p(x,n), where k is a constant and p(x,n) is a product of nonconstant polynomials having gcd = 1; the sequence p(x,n) is a strong divisibility sequence of polynomials; i.e., gcd(p(x,h),p(x,k)) = p(x,gcd(h,k)). For A327320, r = sqrt(3). If x is an integer, then p(x,n) is a strong divisibility sequence of integers.
EXAMPLE
p(x,3) = (1/k)((4 (7 + 18 x + 27 x^2))/(3 sqrt(3))), where k = 4/(3 sqrt(3)).
First six rows:
1;
1, 3;
7, 18, 27;
5, 21, 27, 27;
61, 300, 630, 540, 405;
91, 549, 1350, 1890, 1215, 729;
The first six polynomials, not factored:
1, 1 + 3 x, 7 + 18 x + 27 x^2, 5 + 21 x + 27 x^2 + 27 x^3, 61 + 300 x + 630 x^2 + 540 x^3 + 405 x^4, 91 + 549 x + 1350 x^2 + 1890 x^3 + 1215 x^4 + 729 x^5.
The first six polynomials, factored:
1, 1 + 3 x, 7 + 18 x + 27 x^2, (1 + 3 x) (5 + 6 x + 9 x^2), 61 + 300 x + 630 x^2 + 540 x^3 + 405 x^4, (1 + 3 x) (13 + 6 x + 9 x^2) (7 + 18 x + 27 x^2).
MATHEMATICA
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[
MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@
Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Table[f[x, n], {n, 1, 6}]
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]] (* A327321 *)
(* Peter J. C. Moses, Nov 01 2019 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Nov 08 2019
STATUS
approved