The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327321 Triangular array read by rows: row n shows the coefficients of the polynomial p(x,n) constructed as in Comments; these polynomials form a strong divisibility sequence. 10
 1, 1, 3, 7, 18, 27, 5, 21, 27, 27, 61, 300, 630, 540, 405, 91, 549, 1350, 1890, 1215, 729, 547, 3822, 11529, 18900, 19845, 10206, 5103, 205, 1641, 5733, 11529, 14175, 11907, 5103, 2187, 4921, 44280, 177228, 412776, 622566, 612360, 428652, 157464, 59049, 7381 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Suppose q is a rational number such that the number r = sqrt(q) is irrational. The function (r x + r)^n - (r x - 1/r)^n of x can be represented as k*p(x,n), where k is a constant and p(x,n) is a product of nonconstant polynomials having gcd = 1; the sequence p(x,n) is a strong divisibility sequence of polynomials; i.e., gcd(p(x,h),p(x,k)) = p(x,gcd(h,k)).  For A327320, r = sqrt(3).  If x is an integer, then p(x,n) is a strong divisibility sequence of integers. LINKS EXAMPLE p(x,3) = (1/k)((4 (7 + 18 x + 27 x^2))/(3 sqrt(3))), where k = 4/(3 sqrt(3)). First six rows:    1;    1,   3;    7,  18,   27;    5,  21,   27,   27;   61, 300,  630,  540,  405;   91, 549, 1350, 1890, 1215, 729; The first six polynomials, not factored: 1, 1 + 3 x, 7 + 18 x + 27 x^2, 5 + 21 x + 27 x^2 + 27 x^3, 61 + 300 x + 630 x^2 + 540 x^3 + 405 x^4, 91 + 549 x + 1350 x^2 + 1890 x^3 + 1215 x^4 + 729 x^5. The first six polynomials, factored: 1, 1 + 3 x, 7 + 18 x + 27 x^2, (1 + 3 x) (5 + 6 x + 9 x^2), 61 + 300 x + 630 x^2 + 540 x^3 + 405 x^4, (1 + 3 x) (13 + 6 x + 9 x^2) (7 + 18 x + 27 x^2). MATHEMATICA c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[ MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@ Variables /@ #1 &)[List @@ poly], 0], poly]; r = Sqrt; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; Table[f[x, n], {n, 1, 6}] Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]  (* A327321 *) (* Peter J. C. Moses, Nov 01 2019 *) CROSSREFS Cf. A327320, A329008, A329000, A031364. Sequence in context: A218165 A102329 A331713 * A069143 A097007 A308445 Adjacent sequences:  A327318 A327319 A327320 * A327322 A327323 A327324 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Nov 08 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 12:59 EDT 2021. Contains 347607 sequences. (Running on oeis4.)