login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329014 a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(6) as in A327323. 4
1, 5, 31, 185, 1111, 6665, 5713, 239945, 1439671, 8638025, 51828151, 310968905, 1865813431, 1599268655, 67169283511, 403015701065, 2418094206391, 14508565238345, 87051391430071, 522308348580425, 447692870211793, 18803100548895305, 112818603293371831 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).

LINKS

Table of n, a(n) for n=1..23.

EXAMPLE

See Example in A327323.

MATHEMATICA

c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];

r = Sqrt[6]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];

Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327323 *)

Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329014 *)

Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329015 *)

Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329016 *)

(* Peter J. C. Moses, Nov 01 2019 *)

CROSSREFS

Cf. A327323, A329015, A329016.

Sequence in context: A255236 A202753 A057426 * A015540 A014987 A108079

Adjacent sequences:  A329011 A329012 A329013 * A329015 A329016 A329017

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Nov 23 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 01:30 EST 2020. Contains 331166 sequences. (Running on oeis4.)