login
A329014
a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(6) as in A327323.
4
1, 5, 31, 185, 1111, 6665, 5713, 239945, 1439671, 8638025, 51828151, 310968905, 1865813431, 1599268655, 67169283511, 403015701065, 2418094206391, 14508565238345, 87051391430071, 522308348580425, 447692870211793, 18803100548895305, 112818603293371831
OFFSET
1,2
COMMENTS
a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).
EXAMPLE
See Example in A327323.
MATHEMATICA
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[6]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327323 *)
Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329014 *)
Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329015 *)
Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329016 *)
(* Peter J. C. Moses, Nov 01 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 23 2019
STATUS
approved