login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056541 a(n) = 2n*a(n-1) + 1 with a(0)=0. 1
0, 1, 5, 31, 249, 2491, 29893, 418503, 6696049, 120528883, 2410577661, 53032708543, 1272785005033, 33092410130859, 926587483664053, 27797624509921591, 889523984317490913, 30243815466794691043 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

if s(n) is a sequence defined as s(0)=x, s(n) = 2n*s(n-1)+k, n>0, then s(n) = 2^n*n!*x + a(n)*k. - Gary Detlefs, Feb 20 2010

LINKS

Table of n, a(n) for n=0..17.

FORMULA

a(n) = floor[(sqrt(e)-1)*2^n*n! ] = A010844(n)-A000165(n).

a(n) = Sum[P(n, k) * 2^k {k=0 to n-1}] - Ross La Haye, Sep 15 2004

a(n) = 2^n*n!*Sum_{k=1..n}{1/(k!*2^k)}, with n>=0. - Paolo P. Lava, Apr 26 2010

Conjecture: a(n) +(-2*n-1)*a(n-1) +2*(n-1)*a(n-2)=0. - R. J. Mathar, May 29 2013

E.g.f.: (exp(x)-1)/(1-2*x) = -12*x/(Q(0)+6*x-3*x^2)/(1-2*x), where Q(k) = 2*(4*k+1)*(32*k^2+16*k+x^2-6) - x^4*(4*k-1)*(4*k+7)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013

EXAMPLE

a(3) = 2*3*a(2)+1 = 6*5+1 = 31.

MATHEMATICA

s=0; lst={s}; Do[s+=s++n; AppendTo[lst, Abs[s]], {n, 1, 5!, 2}]; lst [Vladimir Joseph Stephan Orlovsky, Oct 23 2008]

CROSSREFS

Cf. A002627.

Sequence in context: A276312 A024451 A046852 * A291885 A126121 A167137

Adjacent sequences:  A056538 A056539 A056540 * A056542 A056543 A056544

KEYWORD

easy,nonn

AUTHOR

Henry Bottomley, Jun 20 2000

EXTENSIONS

More terms from James A. Sellers, Jul 04 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 06:14 EDT 2021. Contains 343072 sequences. (Running on oeis4.)