login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320349
Expansion of e.g.f. Product_{k>=1} 1/(1 - log(1/(1 - x))^k).
8
1, 1, 5, 32, 278, 2894, 35986, 514128, 8306448, 149558688, 2968216944, 64314676128, 1510065781968, 38178537908016, 1033794746169168, 29840453678758272, 914461132860063360, 29645845798652997120, 1013511411165693991680, 36436289007997132646400, 1373976152501162688288000
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(Sum_{k>=1} sigma(k)*log(1/(1 - x))^k/k).
a(n) = Sum_{k=0..n} |Stirling1(n,k)|*A000041(k)*k!.
From Vaclav Kotesovec, Oct 13 2018: (Start)
a(n) ~ n! * exp(n + Pi*sqrt(2*n/(3*(exp(1) - 1))) + Pi^2/(12*(exp(1) - 1))) / (4 * sqrt(3) * n * (exp(1) - 1)^n).
a(n) ~ sqrt(Pi) * exp(Pi*sqrt(2*n/(3*(exp(1) - 1))) + Pi^2/(12*(exp(1) - 1))) * n^(n - 1/2) / (2^(3/2) * sqrt(3) * (exp(1) - 1)^n).
(End)
MAPLE
seq(n!*coeff(series(mul(1/(1-log(1/(1-x))^k), k=1..100), x=0, 21), x, n), n=0..20); # Paolo P. Lava, Jan 09 2019
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[1/(1 - Log[1/(1 - x)]^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k] Log[1/(1 - x)]^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] PartitionsP[k] k!, {k, 0, n}], {n, 0, 20}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 11 2018
STATUS
approved