login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328055
Expansion of e.g.f. -log(1 - x / (1 - x)^2).
2
0, 1, 5, 32, 270, 2904, 38400, 605520, 11113200, 232888320, 5488560000, 143704108800, 4138573824000, 130020673305600, 4425201196416000, 162194862064435200, 6369479157000960000, 266808274486161408000, 11874724379464826880000, 559591797303082672128000
OFFSET
0,3
COMMENTS
a(n) is the number of ways to choose one element from each branch of labeled octupi with n nodes (cf. A029767 and example below). - Enrique Navarrete, Oct 29 2023
FORMULA
E.g.f.: log(1 + Sum_{k>=1} Fibonacci(2*k) * x^k).
a(n) = (n - 1)! * (Lucas(2*n) - 2) for n > 0.
EXAMPLE
For n=2, the 3 labeled octupi are the following, and there are 2+2+1 ways to choose one element from each branch:
O-1-2;
O-2-1;
1-O-2. - Enrique Navarrete, Oct 29 2023
MATHEMATICA
nmax = 19; CoefficientList[Series[-Log[1 - x/(1 - x)^2], {x, 0, nmax}], x] Range[0, nmax]!
Join[{0}, Table[(n - 1)! (LucasL[2 n] - 2), {n, 1, 19}]]
PROG
(Magma) [0] cat [Factorial(n - 1)*(Lucas(2*n)-2):n in [1..20]]; // Marius A. Burtea, Oct 03 2019
(PARI) my(x='x+O('x^20)); concat(0, Vec(serlaplace(-log(1 - x / (1 - x)^2)))) \\ Michel Marcus, Oct 03 2019
CROSSREFS
Cf. A001906, A004146, A005248, A005443, A029767, A052567 (exponential transform), A100404, A226968, A328054.
Sequence in context: A215916 A068102 A166993 * A265130 A305407 A320349
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 03 2019
STATUS
approved