login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328058
Primes p such that 2*p-1 is a semiprime.
1
5, 11, 13, 17, 29, 43, 47, 61, 67, 71, 73, 89, 101, 103, 107, 109, 127, 151, 181, 191, 197, 223, 227, 241, 251, 269, 277, 283, 317, 349, 359, 373, 397, 409, 421, 433, 457, 461, 467, 487, 521, 541, 569, 571, 631, 643, 647, 659, 673, 701, 709, 719, 733, 739, 751, 757, 769, 821, 857, 859, 881, 883
OFFSET
1,1
LINKS
EXAMPLE
a(3)=13 is in the sequence because it is prime and 2*13-1=5^2 is a semiprime.
MAPLE
select(t -> isprime(t) and numtheory:-bigomega(2*t-1)=2, [2, seq(i, i=3..10000, 2)]);
MATHEMATICA
Select[Prime@ Range@ 153, PrimeOmega[2 # - 1] == 2 &] (* Michael De Vlieger, Oct 03 2019 *)
PROG
(Magma) [p: p in PrimesUpTo(1000)| &+[d[2]: d in Factorization(2*p-1)] eq 2]; // Marius A. Burtea, Oct 03 2019
(PARI) isok(p) = isprime(p) && (bigomega(2*p-1) == 2); \\ Michel Marcus, Oct 04 2019
CROSSREFS
Cf. A000040, A001358. Includes A067756 and A162336.
Sequence in context: A230288 A124662 A226614 * A191042 A049511 A024900
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Oct 03 2019
STATUS
approved