login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328057
Number of graphs with n nodes having fewer than n edges.
1
1, 2, 3, 7, 14, 33, 81, 215, 601, 1808, 5721, 19133, 67218, 247377, 950679, 3806360, 15837196, 68336348, 305196782, 1408294018, 6703197359, 32861879994, 165699114887, 858237346563, 4560774579700, 24839216194151, 138505159164086, 789982051646096, 4604866422703625
OFFSET
1,2
LINKS
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/g]^g, {i, 2, Length[v]}, {j, 1, i - 1}]*Product[c = v[[i]]; t[c]^Quotient[c - 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
a[n_] := a[n] = Module[{s = O[x]^n}, Do[s += permcount[p]*edges[p, 1 + x^# + O[x]^n &], {p, IntegerPartitions[n]}]; SeriesCoefficient[s/(1-x), {x, 0, n - 1}]/n!];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 30}] (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
a(n)={my(s=O(x^n)); forpart(p=n, s+=permcount(p)*edges(p, i->1 + x^i + O(x^n))); polcoef(s/(1-x), n-1)/n!} \\ Andrew Howroyd, Oct 22 2019
CROSSREFS
Sequence in context: A348530 A229734 A035083 * A305785 A367387 A185089
KEYWORD
nonn
AUTHOR
Sigurd Kittilsen and Lars Tveito, Oct 07 2019
EXTENSIONS
Terms a(17) and beyond from Andrew Howroyd, Oct 22 2019
STATUS
approved