Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jan 09 2021 11:37:50
%S 1,2,3,7,14,33,81,215,601,1808,5721,19133,67218,247377,950679,3806360,
%T 15837196,68336348,305196782,1408294018,6703197359,32861879994,
%U 165699114887,858237346563,4560774579700,24839216194151,138505159164086,789982051646096,4604866422703625
%N Number of graphs with n nodes having fewer than n edges.
%H Andrew Howroyd, <a href="/A328057/b328057.txt">Table of n, a(n) for n = 1..50</a>
%t permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
%t edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/g]^g, {i, 2, Length[v]}, {j, 1, i - 1}]*Product[c = v[[i]]; t[c]^Quotient[c - 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
%t a[n_] := a[n] = Module[{s = O[x]^n}, Do[s += permcount[p]*edges[p, 1 + x^# + O[x]^n &], {p, IntegerPartitions[n]}]; SeriesCoefficient[s/(1-x), {x, 0, n - 1}]/n!];
%t Table[Print[n, " ", a[n]]; a[n], {n, 1, 30}] (* _Jean-François Alcover_, Jan 08 2021, after _Andrew Howroyd_ *)
%o (PARI)
%o permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
%o edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
%o a(n)={my(s=O(x^n)); forpart(p=n, s+=permcount(p)*edges(p, i->1 + x^i + O(x^n))); polcoef(s/(1-x), n-1)/n!} \\ _Andrew Howroyd_, Oct 22 2019
%Y Cf. A001433, A008406.
%K nonn
%O 1,2
%A _Sigurd Kittilsen_ and _Lars Tveito_, Oct 07 2019
%E Terms a(17) and beyond from _Andrew Howroyd_, Oct 22 2019