login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328054
Expansion of e.g.f. log(1 + x / (1 - x)^2).
2
0, 1, 3, 8, 18, 24, 0, 720, 15120, 161280, 1088640, 3628800, 0, 479001600, 18681062400, 348713164800, 3923023104000, 20922789888000, 0, 6402373705728000, 364935301226496000, 9731608032706560000, 153272826515128320000, 1124000727777607680000, 0, 620448401733239439360000
OFFSET
0,3
COMMENTS
Logarithmic transform of A001563.
LINKS
FORMULA
E.g.f.: log(1 + Sum_{k>=1} k * x^k).
D-finite with recurrence a(n+3) = n*(n+1)*(n+2)*a(n) - 2*(n+2)*(n+1)*a(n+1) + 2*(n+2)*a(n+2). - Robert Israel, Jan 16 2023
MAPLE
b:= proc(n) option remember; n*n! end:
a:= proc(n) option remember; `if`(n=0, 0, b(n)-
add(binomial(n, j)*j*b(n-j)*a(j), j=1..n-1)/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 04 2019
MATHEMATICA
nmax = 25; CoefficientList[Series[Log[1 + x/(1 - x)^2], {x, 0, nmax}], x] Range[0, nmax]!
Join[{0}, Table[2 (n - 1)! (1 - Cos[Pi n/3]), {n, 1, 25}]]
PROG
(PARI) my(x='x+O('x^30)); concat(0, Vec(serlaplace(log(1 + x / (1 - x)^2)))) \\ Michel Marcus, Oct 04 2019
CROSSREFS
Cf. A001563, A008588 (positions of 0's), A009306, A082579, A328055.
Sequence in context: A088589 A319764 A063597 * A171701 A288249 A360139
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 03 2019
STATUS
approved