|
|
A328056
|
|
Numbers k such that phi(k) > phi(k+1) > phi(k+2) where phi is the Euler totient function (A000010).
|
|
2
|
|
|
313, 523, 733, 823, 824, 943, 944, 973, 1153, 1363, 1573, 1753, 1783, 1813, 1993, 2143, 2413, 2473, 2623, 2803, 3043, 3133, 3134, 3253, 3313, 3463, 3703, 3883, 4093, 4123, 4303, 4387, 4388, 4513, 4723, 4873, 4874, 4933, 5113, 5143, 5353, 5443, 5444, 5563, 5564
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Contains all members k of A206581 such that k==103 (mod 210) except 103.- Robert Israel, Oct 16 2019
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
313 is in the sequence since phi(313) = 312, phi(314) = 156, phi(315) = 144, and 312 > 156 > 144.
|
|
MAPLE
|
R:= NULL: count:= 0:
q:= false: s:= 0:
for i from 1 while count < 100 do
t:= numtheory:-phi(i);
r:= q;
q:= evalb(t<s);
if r and q then count:= count+1; R:= R, i-2 fi;
s:= t;
od:
R; # Robert Israel, Oct 16 2019
|
|
MATHEMATICA
|
Flatten[Position[Partition[EulerPhi[Range[5600]], 3, 1], _?(Max[Differences[#]] < 0 &)] // Quiet] (* Amiram Eldar, Oct 06 2019 after Harvey P. Dale at A078776 *)
|
|
PROG
|
(Magma) [k:k in [1..5600]| EulerPhi(k) gt EulerPhi(k+1) and EulerPhi(k+1) gt EulerPhi(k+2)]; // Marius A. Burtea, Oct 07 2019
|
|
CROSSREFS
|
Cf. A000010, A078776, A161962, A161963, A206581, A327880.
Supersequence of A326817.
Sequence in context: A093808 A257527 A142745 * A142951 A176571 A142628
Adjacent sequences: A328053 A328054 A328055 * A328057 A328058 A328059
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Kritsada Moomuang, Oct 03 2019
|
|
STATUS
|
approved
|
|
|
|