login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229734
G.f.: (1+x-2*x^2+2*x^3-sqrt(1-2*x-3*x^2+4*x^3-4*x^4))/(2*(1-x+x^2)).
0
0, 1, 1, 1, 2, 3, 7, 14, 33, 73, 174, 407, 987, 2386, 5877, 14509, 36210, 90715, 228863, 579654, 1475465, 3768993, 9664454, 24857951, 64133027, 165900202, 430242509, 1118325365, 2913106746, 7603261427, 19881409943, 52076282638, 136625968593, 358989196793, 944595607198, 2488799333031, 6565694568171
OFFSET
0,5
LINKS
S. Kitaev and J. Remmel, The 1-box pattern on pattern avoiding permutations, arXiv preprint arXiv:1305.6970 [math.CO], 2013. See Th. 8. also J. Int. Seq. 17 (2014) 14.3.3
FORMULA
D-finite with recurrence: n*a(n) +3*(-n+1)*a(n-1) +6*a(n-2) +(5*n-24)*a(n-3) +(-11*n+51)*a(n-4) +2*(4*n-21)*a(n-5) +4*(-n+6)*a(n-6)=0. - R. J. Mathar, Jan 24 2018
MATHEMATICA
CoefficientList[Series[(1+x-2x^2+2x^3-Sqrt[1-2x-3x^2+4x^3-4x^4])/(2(1-x+ x^2)), {x, 0, 40}], x] (* Harvey P. Dale, Apr 28 2016 *)
CROSSREFS
Sequence in context: A180752 A000642 A348530 * A035083 A328057 A305785
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 01 2013
STATUS
approved