login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265130
Total sum of number of lambda-parking functions, where lambda ranges over all partitions of k into distinct parts with largest part n and n<=k<=n*(n+1)/2.
2
1, 1, 5, 32, 272, 2957, 39531, 629806, 11673074, 247028567, 5881190801, 155651692748, 4534744862052, 144246963009697, 4975152075900887, 184958685188293274, 7373625038400716198, 313817002976857310507, 14201832585602869616349, 681022860320979979626232
OFFSET
0,3
MAPLE
p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j)
-> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)):
g:= (n, i, l)-> `if`(i*(i+1)/2<n, 0, `if`(n=0, p(l),
g(n, i-1, l)+`if`(i>n, 0, g(n-i, i-1, [i, l[]])))):
a:= n-> `if`(n=0, 1, add(g(k-n, n-1, [n]), k=n..n*(n+1)/2)):
seq(a(n), n=0..10);
MATHEMATICA
p[l_] := Function[n, n!*Det[Table[Function [t,
If[t < 0, 0, l[[i]]^t/t!]][j - i + 1], {i, n}, {j, n}]]][Length[l]];
g[n_, i_, l_] := If[i(i+1)/2 < n, 0,
If[n == 0, p[l], g[n, i - 1, l] +
If[i > n, 0, g[n - i, i - 1, Prepend[l, i]]]]];
a[n_] := If[n == 0, 1, Sum[g[k - n, n - 1, {n}], {k, n, n(n+1)/2}]];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Aug 22 2021, after Alois P. Heinz *)
CROSSREFS
Column sums of A265018, A265019.
Sequence in context: A068102 A166993 A328055 * A305407 A320349 A354013
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 02 2015
STATUS
approved