login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A265130 Total sum of number of lambda-parking functions, where lambda ranges over all partitions of k into distinct parts with largest part n and n<=k<=n*(n+1)/2. 2
1, 1, 5, 32, 272, 2957, 39531, 629806, 11673074, 247028567, 5881190801, 155651692748, 4534744862052, 144246963009697, 4975152075900887, 184958685188293274, 7373625038400716198, 313817002976857310507, 14201832585602869616349, 681022860320979979626232 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..19.

R. Stanley, Parking Functions, 2011

MAPLE

p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j)

         -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)):

g:= (n, i, l)-> `if`(i*(i+1)/2<n, 0, `if`(n=0, p(l),

   g(n, i-1, l)+`if`(i>n, 0, g(n-i, i-1, [i, l[]])))):

a:= n-> `if`(n=0, 1, add(g(k-n, n-1, [n]), k=n..n*(n+1)/2)):

seq(a(n), n=0..10);

CROSSREFS

Column sums of A265018, A265019.

Sequence in context: A068102 A166993 A328055 * A305407 A320349 A001923

Adjacent sequences:  A265127 A265128 A265129 * A265131 A265132 A265133

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Dec 02 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 07:23 EDT 2019. Contains 328252 sequences. (Running on oeis4.)