login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total sum of number of lambda-parking functions, where lambda ranges over all partitions of k into distinct parts with largest part n and n<=k<=n*(n+1)/2.
2

%I #14 Aug 22 2021 09:25:01

%S 1,1,5,32,272,2957,39531,629806,11673074,247028567,5881190801,

%T 155651692748,4534744862052,144246963009697,4975152075900887,

%U 184958685188293274,7373625038400716198,313817002976857310507,14201832585602869616349,681022860320979979626232

%N Total sum of number of lambda-parking functions, where lambda ranges over all partitions of k into distinct parts with largest part n and n<=k<=n*(n+1)/2.

%H R. Stanley, <a href="http://math.mit.edu/~rstan/transparencies/parking.pdf">Parking Functions</a>, 2011

%p p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j)

%p -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)):

%p g:= (n, i, l)-> `if`(i*(i+1)/2<n, 0, `if`(n=0, p(l),

%p g(n, i-1, l)+`if`(i>n, 0, g(n-i, i-1, [i, l[]])))):

%p a:= n-> `if`(n=0, 1, add(g(k-n, n-1, [n]), k=n..n*(n+1)/2)):

%p seq(a(n), n=0..10);

%t p[l_] := Function[n, n!*Det[Table[Function [t,

%t If[t < 0, 0, l[[i]]^t/t!]][j - i + 1], {i, n}, {j, n}]]][Length[l]];

%t g[n_, i_, l_] := If[i(i+1)/2 < n, 0,

%t If[n == 0, p[l], g[n, i - 1, l] +

%t If[i > n, 0, g[n - i, i - 1, Prepend[l, i]]]]];

%t a[n_] := If[n == 0, 1, Sum[g[k - n, n - 1, {n}], {k, n, n(n+1)/2}]];

%t Table[a[n], {n, 0, 15}] (* _Jean-François Alcover_, Aug 22 2021, after _Alois P. Heinz_ *)

%Y Column sums of A265018, A265019.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Dec 02 2015