login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. -log(1 - x / (1 - x)^2).
2

%I #16 Oct 29 2023 20:26:21

%S 0,1,5,32,270,2904,38400,605520,11113200,232888320,5488560000,

%T 143704108800,4138573824000,130020673305600,4425201196416000,

%U 162194862064435200,6369479157000960000,266808274486161408000,11874724379464826880000,559591797303082672128000

%N Expansion of e.g.f. -log(1 - x / (1 - x)^2).

%C a(n) is the number of ways to choose one element from each branch of labeled octupi with n nodes (cf. A029767 and example below). - _Enrique Navarrete_, Oct 29 2023

%F E.g.f.: log(1 + Sum_{k>=1} Fibonacci(2*k) * x^k).

%F a(n) = (n - 1)! * (Lucas(2*n) - 2) for n > 0.

%e For n=2, the 3 labeled octupi are the following, and there are 2+2+1 ways to choose one element from each branch:

%e O-1-2;

%e O-2-1;

%e 1-O-2. - _Enrique Navarrete_, Oct 29 2023

%t nmax = 19; CoefficientList[Series[-Log[1 - x/(1 - x)^2], {x, 0, nmax}], x] Range[0, nmax]!

%t Join[{0}, Table[(n - 1)! (LucasL[2 n] - 2), {n, 1, 19}]]

%o (Magma) [0] cat [Factorial(n - 1)*(Lucas(2*n)-2):n in [1..20]]; // _Marius A. Burtea_, Oct 03 2019

%o (PARI) my(x='x+O('x^20)); concat(0, Vec(serlaplace(-log(1 - x / (1 - x)^2)))) \\ _Michel Marcus_, Oct 03 2019

%Y Cf. A001906, A004146, A005248, A005443, A029767, A052567 (exponential transform), A100404, A226968, A328054.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Oct 03 2019