login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320351
Number of connected multiset partitions of integer partitions of n.
4
1, 1, 3, 5, 11, 18, 38, 66, 130, 237, 449, 823, 1538
OFFSET
0,3
EXAMPLE
The a(1) = 1 through a(5) = 18 multiset partitions:
{{1}} {{2}} {{3}} {{4}} {{5}}
{{1,1}} {{1,2}} {{1,3}} {{1,4}}
{{1},{1}} {{1,1,1}} {{2,2}} {{2,3}}
{{1},{1,1}} {{1,1,2}} {{1,1,3}}
{{1},{1},{1}} {{2},{2}} {{1,2,2}}
{{1,1,1,1}} {{1,1,1,2}}
{{1},{1,2}} {{1},{1,3}}
{{1},{1,1,1}} {{2},{1,2}}
{{1,1},{1,1}} {{1,1,1,1,1}}
{{1},{1},{1,1}} {{1},{1,1,2}}
{{1},{1},{1},{1}} {{1,1},{1,2}}
{{1},{1,1,1,1}}
{{1,1},{1,1,1}}
{{1},{1},{1,2}}
{{1},{1},{1,1,1}}
{{1},{1,1},{1,1}}
{{1},{1},{1},{1,1}}
{{1},{1},{1},{1},{1}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n], Length[csm[#]]==1&]], {n, 8}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 11 2018
STATUS
approved