login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320789
Number of multisets of exactly four partitions of positive integers into distinct parts with total sum of parts equal to n.
2
1, 1, 3, 5, 11, 18, 34, 55, 96, 152, 248, 386, 607, 921, 1405, 2092, 3112, 4551, 6635, 9545, 13683, 19401, 27393, 38346, 53441, 73928, 101840, 139398, 190020, 257601, 347836, 467381, 625686, 833917, 1107547, 1465136, 1931754, 2537747, 3323490, 4338012, 5645645
OFFSET
4,3
LINKS
FORMULA
a(n) = [x^n y^4] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 5)
end:
a:= n-> coeff(b(n$2), x, 4):
seq(a(n), n=4..60);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n];
b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*x^j*Binomial[g[i] + j - 1, j], {j, 0, n/i}]]], {x, 0, 5}];
a[n_] := SeriesCoefficient[b[n, n], {x, 0, 4}];
a /@ Range[4, 60] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A285229.
Cf. A000009.
Sequence in context: A244473 A023597 A281357 * A269628 A162891 A320351
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 21 2018
STATUS
approved