login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A320792
Number of multisets of exactly seven partitions of positive integers into distinct parts with total sum of parts equal to n.
2
1, 1, 3, 5, 11, 19, 37, 63, 114, 192, 331, 547, 914, 1482, 2412, 3847, 6126, 9620, 15052, 23292, 35889, 54806, 83294, 125658, 188656, 281418, 417828, 616838, 906516, 1325457, 1929644, 2796189, 4035315, 5798648, 8300214, 11833892, 16810048, 23790327, 33552202
OFFSET
7,3
LINKS
FORMULA
a(n) = [x^n y^7] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 8)
end:
a:= n-> coeff(b(n$2), x, 7):
seq(a(n), n=7..60);
CROSSREFS
Column k=7 of A285229.
Cf. A000009.
Sequence in context: A175783 A078722 A320791 * A320793 A320794 A320795
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 21 2018
STATUS
approved