login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320791
Number of multisets of exactly six partitions of positive integers into distinct parts with total sum of parts equal to n.
2
1, 1, 3, 5, 11, 19, 37, 62, 112, 187, 320, 523, 866, 1386, 2229, 3510, 5516, 8538, 13172, 20073, 30461, 45781, 68469, 101586, 149991, 219922, 320925, 465492, 672055, 965063, 1379741, 1962957, 2781094, 3922672, 5511041, 7710818, 10748577, 14926037, 20654385
OFFSET
6,3
LINKS
FORMULA
a(n) = [x^n y^6] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 7)
end:
a:= n-> coeff(b(n$2), x, 6):
seq(a(n), n=6..60);
CROSSREFS
Column k=6 of A285229.
Cf. A000009.
Sequence in context: A320790 A175783 A078722 * A320792 A320793 A320794
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 21 2018
STATUS
approved