Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Oct 21 2018 09:37:47
%S 1,1,3,5,11,19,37,62,112,187,320,523,866,1386,2229,3510,5516,8538,
%T 13172,20073,30461,45781,68469,101586,149991,219922,320925,465492,
%U 672055,965063,1379741,1962957,2781094,3922672,5511041,7710818,10748577,14926037,20654385
%N Number of multisets of exactly six partitions of positive integers into distinct parts with total sum of parts equal to n.
%H Alois P. Heinz, <a href="/A320791/b320791.txt">Table of n, a(n) for n = 6..1000</a>
%F a(n) = [x^n y^6] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
%p g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
%p d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
%p end:
%p b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
%p add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 7)
%p end:
%p a:= n-> coeff(b(n$2), x, 6):
%p seq(a(n), n=6..60);
%Y Column k=6 of A285229.
%Y Cf. A000009.
%K nonn
%O 6,3
%A _Alois P. Heinz_, Oct 21 2018