login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of multisets of exactly six partitions of positive integers into distinct parts with total sum of parts equal to n.
2

%I #6 Oct 21 2018 09:37:47

%S 1,1,3,5,11,19,37,62,112,187,320,523,866,1386,2229,3510,5516,8538,

%T 13172,20073,30461,45781,68469,101586,149991,219922,320925,465492,

%U 672055,965063,1379741,1962957,2781094,3922672,5511041,7710818,10748577,14926037,20654385

%N Number of multisets of exactly six partitions of positive integers into distinct parts with total sum of parts equal to n.

%H Alois P. Heinz, <a href="/A320791/b320791.txt">Table of n, a(n) for n = 6..1000</a>

%F a(n) = [x^n y^6] Product_{j>=1} 1/(1-y*x^j)^A000009(j).

%p g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,

%p d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)

%p end:

%p b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,

%p add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 7)

%p end:

%p a:= n-> coeff(b(n$2), x, 6):

%p seq(a(n), n=6..60);

%Y Column k=6 of A285229.

%Y Cf. A000009.

%K nonn

%O 6,3

%A _Alois P. Heinz_, Oct 21 2018