login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320787
Number of multisets of exactly two partitions of positive integers into distinct parts with total sum of parts equal to n.
2
1, 1, 3, 4, 8, 11, 18, 25, 38, 52, 75, 101, 140, 186, 252, 330, 438, 567, 740, 948, 1221, 1549, 1973, 2482, 3129, 3907, 4884, 6055, 7512, 9255, 11402, 13967, 17102, 20836, 25372, 30760, 37262, 44970, 54221, 65156, 78220, 93622, 111937, 133481, 158996, 188930
OFFSET
2,3
LINKS
FORMULA
a(n) = [x^n y^2] Product_{j>=1} 1/(1-y*x^j)^A000009(j).
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,
d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 3)
end:
a:= n-> coeff(b(n$2), x, 2):
seq(a(n), n=2..60);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n];
b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*x^j*Binomial[g[i] + j - 1, j], {j, 0, n/i}]]], {x, 0, 3}];
a[n_] := SeriesCoefficient[b[n, n], {x, 0, 2}];
a /@ Range[2, 60] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A285229.
Cf. A000009.
Sequence in context: A001994 A212544 A349801 * A183151 A288566 A084421
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 21 2018
STATUS
approved