login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212544
Number of partitions of n containing at least one part m-4 if m is the largest part.
2
0, 0, 1, 1, 3, 4, 8, 11, 18, 24, 37, 48, 69, 89, 122, 155, 207, 259, 337, 419, 534, 657, 827, 1008, 1252, 1518, 1864, 2246, 2736, 3276, 3960, 4722, 5668, 6727, 8032, 9492, 11274, 13279, 15696, 18424, 21694, 25380, 29772, 34736, 40604, 47244, 55060, 63897
OFFSET
4,5
LINKS
FORMULA
G.f.: Sum_{i>0} x^(2*i+4) / Product_{j=1..4+i} (1-x^j).
EXAMPLE
a(6) = 1: [5,1].
a(7) = 1: [5,1,1].
a(8) = 3: [5,1,1,1], [5,2,1], [6,2].
a(9) = 4: [5,1,1,1,1], [5,2,1,1], [5,3,1], [6,2,1].
a(10) = 8: [5,1,1,1,1,1], [5,2,1,1,1], [5,2,2,1], [5,3,1,1], [5,4,1], [6,2,1,1], [6,2,2], [7,3].
MAPLE
b:= proc(n, i) option remember;
`if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> add(b(n-2*m-4, min(n-2*m-4, m+4)), m=1..(n-4)/2):
seq(a(n), n=4..60);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]];
a[n_] := Sum[b[n - 2 m - 4, Min[n - 2 m - 4, m + 4]], {m, 1, (n - 4)/2}];
a /@ Range[4, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A212551.
Sequence in context: A099108 A208971 A001994 * A349801 A320787 A183151
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 20 2012
STATUS
approved