login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n containing at least one part m-4 if m is the largest part.
2

%I #13 Dec 07 2020 08:10:41

%S 0,0,1,1,3,4,8,11,18,24,37,48,69,89,122,155,207,259,337,419,534,657,

%T 827,1008,1252,1518,1864,2246,2736,3276,3960,4722,5668,6727,8032,9492,

%U 11274,13279,15696,18424,21694,25380,29772,34736,40604,47244,55060,63897

%N Number of partitions of n containing at least one part m-4 if m is the largest part.

%H Alois P. Heinz, <a href="/A212544/b212544.txt">Table of n, a(n) for n = 4..1000</a>

%F G.f.: Sum_{i>0} x^(2*i+4) / Product_{j=1..4+i} (1-x^j).

%e a(6) = 1: [5,1].

%e a(7) = 1: [5,1,1].

%e a(8) = 3: [5,1,1,1], [5,2,1], [6,2].

%e a(9) = 4: [5,1,1,1,1], [5,2,1,1], [5,3,1], [6,2,1].

%e a(10) = 8: [5,1,1,1,1,1], [5,2,1,1,1], [5,2,2,1], [5,3,1,1], [5,4,1], [6,2,1,1], [6,2,2], [7,3].

%p b:= proc(n, i) option remember;

%p `if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))

%p end:

%p a:= n-> add(b(n-2*m-4, min(n-2*m-4, m+4)), m=1..(n-4)/2):

%p seq(a(n), n=4..60);

%t b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]];

%t a[n_] := Sum[b[n - 2 m - 4, Min[n - 2 m - 4, m + 4]], {m, 1, (n - 4)/2}];

%t a /@ Range[4, 60] (* _Jean-François Alcover_, Dec 07 2020, after _Alois P. Heinz_ *)

%Y Column k=4 of A212551.

%K nonn

%O 4,5

%A _Alois P. Heinz_, May 20 2012