login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320784
Negated inverse Euler transform of {-1 if n is a triangular number else 0, n > 0} = -A010054.
1
1, 1, 0, 1, 1, 1, 2, 3, 3, 5, 8, 11, 14, 23, 31, 47, 68, 101, 144, 217, 315, 471, 693, 1035, 1528, 2287, 3397, 5085, 7587, 11377, 17017, 25565, 38349, 57681, 86724, 130645, 196778, 296853, 447864, 676479, 1022082, 1545685, 2338299, 3540111, 5361606, 8125551
OFFSET
0,7
COMMENTS
The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.
MATHEMATICA
EulerInvTransform[{}]={}; EulerInvTransform[seq_]:=Module[{final={}}, For[i=1, i<=Length[seq], i++, AppendTo[final, i*seq[[i]]-Sum[final[[d]]*seq[[i-d]], {d, i-1}]]];
Table[Sum[MoebiusMu[i/d]*final[[d]], {d, Divisors[i]}]/i, {i, Length[seq]}]];
-EulerInvTransform[-Table[SquaresR[1, 8*n+1]/2, {n, 30}]]
CROSSREFS
Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320776, A320777, A320778, A320779, A320780, A320781, A320782.
Sequence in context: A069831 A017820 A129577 * A107854 A118808 A265019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 22 2018
STATUS
approved