OFFSET
0,7
COMMENTS
Column 1 of A118806.
FORMULA
G.f.=product([1-x^(3j)+x^(4j)]/(1-x^j), j=1..infinity)*sum(x^(3j)*(1-x^j)/[1-x^(3j)+x^(4j)], j=1..infinity).
EXAMPLE
a(9)=5 because we have [6,1,1,1],[4,2,1,1,1],[3,3,3],[3,3,1,1,1] and [3,2,2,2].
MAPLE
g:=product((1-x^(3*j)+x^(4*j))/(1-x^j), j=1..70)*sum(x^(3*j)*(1-x^j)/(1-x^(3*j)+x^(4*j)), j=1..70): gser:=series(g, x=0, 70): seq(coeff(gser, x, n), n=0..60);
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Count[Length/@Split[#], 3]==1&]], {n, 0, 60}] (* Harvey P. Dale, Mar 24 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Apr 29 2006
STATUS
approved