OFFSET
0,6
COMMENTS
The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.
MAPLE
# The function EulerInvTransform is defined in A358451.
a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-Totient(n))):
seq(a(n), n = 0..43); # Peter Luschny, Nov 21 2022
MATHEMATICA
EulerInvTransform[{}]={}; EulerInvTransform[seq_]:=Module[{final={}}, For[i=1, i<=Length[seq], i++, AppendTo[final, i*seq[[i]]-Sum[final[[d]]*seq[[i-d]], {d, i-1}]]];
Table[Sum[MoebiusMu[i/d]*final[[d]], {d, Divisors[i]}]/i, {i, Length[seq]}]];
EulerInvTransform[Array[EulerPhi, 30]]
CROSSREFS
KEYWORD
sign
AUTHOR
Gus Wiseman, Oct 22 2018
STATUS
approved