login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293548
Expansion of Product_{k>=2} 1/(1 - x^k)^omega(k), where omega(k) is the number of distinct primes dividing k (A001221).
13
1, 0, 1, 1, 2, 2, 5, 4, 8, 9, 15, 16, 28, 29, 46, 54, 77, 90, 131, 150, 211, 251, 337, 401, 540, 637, 839, 1006, 1296, 1551, 1995, 2373, 3013, 3610, 4523, 5410, 6754, 8045, 9965, 11897, 14614, 17410, 21313, 25316, 30816, 36615, 44307, 52539, 63387, 74975, 90078
OFFSET
0,5
COMMENTS
Euler transform of A001221.
LINKS
FORMULA
G.f.: Product_{k>=2} 1/(1 - x^k)^b(k), where b(k) = [x^k] Sum_{j>=1} x^prime(j)/(1 - x^prime(j)).
a(0) = 1; a(n) = (1/n)*Sum_{k=1..n} a(n-k)*b(k), b(k) = Sum_{d|k} d*omega(d).
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/(1 - x^k)^PrimeNu[k], {k, 2, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d PrimeNu[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 50}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 11 2017
STATUS
approved