The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318844 Expansion of Product_{k>=1} (1 + x^k)^(d(k)-1), where d(k) = number of divisors of k (A000005). 1
 1, 0, 1, 1, 2, 2, 5, 4, 8, 10, 15, 17, 29, 31, 48, 60, 81, 99, 143, 167, 231, 287, 374, 460, 615, 740, 964, 1194, 1512, 1856, 2379, 2877, 3635, 4460, 5540, 6759, 8433, 10192, 12608, 15335, 18774, 22726, 27868, 33525, 40863, 49292, 59652, 71694, 86780, 103818, 125118, 149778, 179608 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Convolution of A081362 and A107742. Weigh transform of A032741. LINKS N. J. A. Sloane, Transforms FORMULA G.f.: Product_{k>=1} (1 + x^k)^A032741(k). G.f.: exp(Sum_{k>=1} (sigma_1(k) - 1)*x^k/(k*(1 - x^(2*k)))), where sigma_1(k) = sum of divisors of k (A000203). MAPLE with(numtheory): a:=series(mul((1+x^k)^(tau(k)-1), k=1..100), x=0, 53): seq(coeff(a, x, n), n=0..52); # Paolo P. Lava, Apr 02 2019 MATHEMATICA nmax = 52; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[0, k] - 1), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 52; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, k] - 1) x^k/(k (1 - x^(2 k))), {k, 1, nmax}]], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (DivisorSigma[0, d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 52}] CROSSREFS Cf. A000005, A000203, A032741, A081362, A107742, A318783. Sequence in context: A127683 A127686 A293548 * A034400 A021820 A222882 Adjacent sequences:  A318841 A318842 A318843 * A318845 A318846 A318847 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Sep 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 12:12 EDT 2022. Contains 356065 sequences. (Running on oeis4.)