login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A318847
Number of tree-partitions of a multiset whose multiplicities are the prime indices of n.
4
1, 1, 2, 2, 4, 6, 12, 8, 28, 20, 32, 38, 112, 76, 116, 58, 352, 236, 1296, 176, 540, 288, 4448, 374, 612, 1144, 1812, 824, 16640, 1316, 59968, 612, 2336, 4528, 3208, 2924, 231168, 18320, 10632, 2168, 856960, 7132, 3334400, 3776, 11684, 74080, 12679424, 4919, 19192
OFFSET
1,3
COMMENTS
This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A tree-partition of m is either m itself or a sequence of tree-partitions, one of each part of a multiset partition of m with at least two parts.
FORMULA
a(n) = A281118(A181821(n)).
a(prime(n)) = A289501(n).
a(2^n) = A005804(n).
EXAMPLE
The a(6) = 6 tree-partitions of {1,1,2}:
(112)
((1)(12))
((2)(11))
((1)(1)(2))
((1)((1)(2)))
((2)((1)(1)))
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]], {#1}]&, If[n==1, {}, Flatten[Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]]]];
allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p], {p, Select[mps[m], Length[#]>1&]}], m];
Table[Length[allmsptrees[nrmptn[n]]], {n, 20}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 04 2018
EXTENSIONS
More terms from Jinyuan Wang, Jun 26 2020
STATUS
approved