login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318783
Expansion of Product_{k>=1} 1/(1 - x^k)^(d(k)-1), where d(k) = number of divisors of k (A000005).
4
1, 0, 1, 1, 3, 2, 7, 5, 14, 13, 27, 26, 57, 53, 102, 110, 192, 204, 353, 381, 626, 704, 1094, 1246, 1920, 2185, 3252, 3800, 5503, 6440, 9213, 10827, 15194, 18035, 24836, 29579, 40369, 48103, 64758, 77635, 103279, 123882, 163506, 196286, 256688, 308836, 400329, 481847, 620832
OFFSET
0,5
COMMENTS
Convolution of A010815 and A006171.
Euler transform of A032741.
LINKS
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^A032741(k).
G.f.: exp(Sum_{k>=1} sigma_1(k)*x^(2*k)/(k*(1 - x^k))), where sigma_1(k) = sum of divisors of k (A000203).
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
(tau(d)-1), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..50); # Alois P. Heinz, Sep 03 2018
MATHEMATICA
nmax = 48; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[0, k] - 1), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 48; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k] x^(2 k)/(k (1 - x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (DivisorSigma[0, d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 03 2018
STATUS
approved