login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A318782
Numbers m such that a^(s-1) + b^(s-1) + c^(s-1) + ... is prime, where a, b, c, ... are the distinct primes dividing m and s is their sum.
0
2, 4, 6, 8, 12, 16, 18, 24, 32, 36, 48, 54, 64, 72, 96, 105, 108, 128, 144, 162, 192, 216, 256, 288, 315, 324, 384, 432, 483, 486, 512, 525, 576, 648, 735, 768, 864, 945, 972, 1024, 1152, 1296, 1449, 1458, 1536, 1575, 1728, 1944, 2030, 2048, 2121, 2205, 2301, 2304
OFFSET
1,1
COMMENTS
The corresponding primes are 2, 97, 684331371443, 37608910510519072144329748463290373800530563, ...
EXAMPLE
105 is in the sequence because the prime factors are {3, 5, 7} with the sum 3 + 5 + 7 = 15, and 3^14 + 5^14 + 7^14 = 684331371443 is a prime number.
MAPLE
with(numtheory):nn:=1500:
for n from 1 to nn do:
d:=factorset(n):n0:=nops(d):s0:=add(d[i], i=1..n0):
p:=add(d[i]^(s0-1), i=1..n0):
if isprime(p)
then
printf(`%d, `, n):
else fi:
od:
MATHEMATICA
ok[n_] := Block[{p = First /@ FactorInteger[n]}, PrimeQ@ Total[p^(Total[p] - 1)]]; Select[Range[1024], ok] (* Giovanni Resta, Sep 03 2018 *)
CROSSREFS
Cf. A008472.
Sequence in context: A067946 A227270 A145853 * A064527 A333978 A007694
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 03 2018
EXTENSIONS
More terms from Giovanni Resta, Sep 03 2018
STATUS
approved