

A318780


a(n) is the smallest positive integer k such that k^n is pandigital in base n.


2



2, 4, 5, 12, 15, 15, 33, 53, 36, 41, 55, 51, 59, 91, 81, 60, 131, 167, 173, 312, 213, 394, 309, 222, 356, 868, 351, 704, 526, 1190, 1314, 847, 1435, 1148, 1755, 1499, 1797, 1455, 2311, 1863, 1838, 2120, 2859, 3219, 3463, 2833, 1723, 3009, 3497, 5886, 3746
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

For the corresponding values of k^n, see A318779.


LINKS

Jon E. Schoenfield, Table of n, a(n) for n = 2..165


FORMULA

a(n) = A318779(n)^(1/n).


EXAMPLE

a(2)=2 because 1^2 = 1 = 1_2 (not pandigital in base 2, since it contains no 0 digit), but 2^2 = 4 = 100_2.
a(3)=4 because 1^3 = 1 = 1_3, 2^3 = 8 = 22_3, and 3^3 = 27 = 1000_3 are all nonpandigital in base 3, but 4^3 = 64 = 2101_3.
a(16)=81: 81^16 = 3433683820292512484657849089281 = 2b56d4af8f7932278c797ebd01_16.


CROSSREFS

Cf. A049363 (smallest pandigital number in base n), A185122 (smallest pandigital prime in base n), A260182 (smallest square that is pandigital in base n), A260117 (smallest triangular number that is pandigital in base n), A318725 (smallest k such that k! is pandigital in base n), A318779 (smallest nth power that is pandigital in base n).
Sequence in context: A344712 A268530 A090847 * A056984 A117556 A091071
Adjacent sequences: A318777 A318778 A318779 * A318781 A318782 A318783


KEYWORD

nonn,base


AUTHOR

Jon E. Schoenfield, Sep 03 2018


STATUS

approved



