login
A318778
Number of different positions that an elementary sphinx can occupy in a sphinx of order n.
1
1, 28, 128, 300, 544, 860, 1248, 1708, 2240, 2844
OFFSET
1,2
FORMULA
Conjectures from Colin Barker, Nov 13 2018: (Start)
G.f.: x*(1 + 25*x + 47*x^2 - x^3) / (1 - x)^3.
a(n) = 44 - 80*n + 36*n^2 for n>1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
(End)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Craig Knecht, Sep 10 2018
STATUS
approved