login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184679
Number of (n+1) X 3 binary arrays with every 2 X 2 subblock singular.
1
28, 128, 544, 2384, 10384, 45392, 198352, 867152, 3791056, 16575056, 72469456, 316854608, 1385372368, 6057228368, 26483886544, 115794964304, 506288081104, 2213633766992, 9678629263312, 42317689343312, 185024841512656
OFFSET
1,1
COMMENTS
Column 2 of A184686.
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) - 12*a(n-3).
Conjectures from Colin Barker, Apr 14 2018: (Start)
G.f.: 4*x*(7 - 3*x - 24*x^2) / ((1 - 2*x)*(1 - 3*x - 6*x^2)).
a(n) = 2^(-2-n)*(11*2^(1+2*n) - 3*(3-sqrt(33))^n*(-55+7*sqrt(33)) + 3*(3+sqrt(33))^n*(55+7*sqrt(33))) / 11.
(End)
EXAMPLE
Some solutions for 5 X 3:
..0..0..1....1..0..1....1..0..1....0..0..0....0..0..1....0..0..0....0..0..1
..0..0..0....1..0..0....1..0..0....0..1..1....0..0..1....1..0..1....1..0..0
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..1....0..0..1....0..0..0
..1..0..0....0..0..0....0..1..1....0..0..1....0..0..0....1..0..1....0..1..1
..1..0..0....0..0..0....0..0..0....1..0..1....1..0..1....1..0..0....0..0..0
CROSSREFS
Cf. A184686.
Sequence in context: A044360 A044741 A318778 * A123376 A192796 A124956
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 19 2011
STATUS
approved