OFFSET
0,2
COMMENTS
The numbers in rows of the triangle are along a "fourth layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along a "fourth layer" skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (1+2x)^n and (2+x)^n are given in A128099 and A207538 respectively.)
The coefficients in the expansion of 1/(1-2x-x^5) are given by the sequence generated by the row sums.
The row sums give A098588.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.0559673967128..., when n approaches infinity.
REFERENCES
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
LINKS
FORMULA
T(n,k) = 2^(n - 5*k) / ((n - 5*k)! k!) * (n - 4*k)! where n >= 0 and 0 <= k <= floor(n/5).
EXAMPLE
Triangle begins:
1;
2;
4;
8;
16;
32, 1;
64, 4;
128, 12;
256, 32;
512, 80;
1024, 192, 1;
2048, 448, 6;
4096, 1024, 24;
8192, 2304, 80;
16384, 5120, 240;
32768, 11264, 672, 1;
65536, 24576, 1792, 8;
131072, 53248, 4608, 40;
262144, 114688, 11520, 160;
524288, 245760, 28160, 560;
1048576, 524288, 67584, 1792, 1;
2097152, 1114112, 159744, 5376, 10;
...
MATHEMATICA
t[n_, k_] := t[n, k] = 2^(n - 5 k)/((n - 5 k)! k!) (n - 4 k)!; Table[t[n, k], {n, 0, 22}, {k, 0, Floor[n/5]} ] // Flatten.
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 5, k - 1]]; Table[t[n, k], {n, 0, 22}, {k, 0, Floor[n/5]}] // Flatten.
CROSSREFS
KEYWORD
tabf,nonn,easy
AUTHOR
Zagros Lalo, Sep 04 2018
STATUS
approved