login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) + T(n-5,k-1) for k = 0..floor(n/5); T(n,k)=0 for n or k < 0.
2

%I #14 Sep 28 2018 23:02:38

%S 1,2,4,8,16,32,1,64,4,128,12,256,32,512,80,1024,192,1,2048,448,6,4096,

%T 1024,24,8192,2304,80,16384,5120,240,32768,11264,672,1,65536,24576,

%U 1792,8,131072,53248,4608,40,262144,114688,11520,160,524288,245760,28160,560,1048576,524288,67584,1792,1,2097152,1114112,159744,5376,10

%N Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) + T(n-5,k-1) for k = 0..floor(n/5); T(n,k)=0 for n or k < 0.

%C The numbers in rows of the triangle are along a "fourth layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along a "fourth layer" skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (1+2x)^n and (2+x)^n are given in A128099 and A207538 respectively.)

%C The coefficients in the expansion of 1/(1-2x-x^5) are given by the sequence generated by the row sums.

%C The row sums give A098588.

%C If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.0559673967128..., when n approaches infinity.

%D Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.

%H Zagros Lalo, <a href="/A318776/a318776.pdf">Fourth layer skew diagonals in center-justified triangle of coefficients in expansion of (1 + 2x)^n</a>

%H Zagros Lalo, <a href="/A318776/a318776_1.pdf">Fourth layer skew diagonals in center-justified triangle of coefficients in expansion of (2 + x)^n</a>

%F T(n,k) = 2^(n - 5*k) / ((n - 5*k)! k!) * (n - 4*k)! where n >= 0 and 0 <= k <= floor(n/5).

%e Triangle begins:

%e 1;

%e 2;

%e 4;

%e 8;

%e 16;

%e 32, 1;

%e 64, 4;

%e 128, 12;

%e 256, 32;

%e 512, 80;

%e 1024, 192, 1;

%e 2048, 448, 6;

%e 4096, 1024, 24;

%e 8192, 2304, 80;

%e 16384, 5120, 240;

%e 32768, 11264, 672, 1;

%e 65536, 24576, 1792, 8;

%e 131072, 53248, 4608, 40;

%e 262144, 114688, 11520, 160;

%e 524288, 245760, 28160, 560;

%e 1048576, 524288, 67584, 1792, 1;

%e 2097152, 1114112, 159744, 5376, 10;

%e ...

%t t[n_, k_] := t[n, k] = 2^(n - 5 k)/((n - 5 k)! k!) (n - 4 k)!; Table[t[n, k], {n, 0, 22}, {k, 0, Floor[n/5]} ] // Flatten.

%t t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 5, k - 1]]; Table[t[n, k], {n, 0, 22}, {k, 0, Floor[n/5]}] // Flatten.

%Y Row sums give A098588.

%Y Cf. A013609, A038207, A128099, A207538.

%Y Cf. also A000079 (column 0), A001787 (column 1), A001788 (column 2), A001789 (column 3)

%K tabf,nonn,easy

%O 0,2

%A _Zagros Lalo_, Sep 04 2018