The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239561 Number of compositions of n such that the first part is 1 and the second differences of the parts are in {-n,...,n}. 2
 1, 1, 1, 2, 4, 8, 16, 31, 63, 125, 252, 504, 1013, 2027, 4069, 8141, 16318, 32650, 65381, 130801, 261791, 523677, 1047780, 2095796, 4192533, 8385623, 16773321, 33547917, 67100362, 134203614, 268417029, 536840509, 1073702131, 2147418493, 4294882224, 8589795592 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA a(n) ~ 2^(n-2). - Vaclav Kotesovec, May 01 2014 EXAMPLE There are 2^5 = 32 compositions of 7 with first part = 1. Exactly one of these has second differences not in {-7,...,7}, namely [1,5,1]. Thus a(7) = 32 - 1 = 31. MAPLE b:= proc(n) option remember; `if`(n<5, [1, 1, 3, 4, 8][n+1], (-(n^3+3*n^2+184*n-348) *b(n-1) +(2*n^4+23*n^3-155*n^2-166*n+3776) *b(n-2) +(n^4+14*n^3-5*n^2+122*n+768) *b(n-3) +(2*n^3+10*n^2-64*n-1328) *b(n-4) -(2*n^4+28*n^3-78*n^2-272*n+2320) *b(n-5))/ (n^4+10*n^3-75*n^2-20*n+1244)) end: a:= n-> `if`(n<7, ceil(2^(n-2)), 2^(n-2)-b(n-7)): seq(a(n), n=0..40); MATHEMATICA b[n_, i_, j_, k_] := b[n, i, j, k] = If[n == 0, 1, If[i == 0, Sum[b[n - h, j, h, k], {h, 1, n}], Sum[b[n - h, j, h, k], {h, Max[1, 2*j - i - k], Min[n, 2*j - i + k]}]]]; a[n_] := If[n == 0, 1, b[n - 1, 0, 1, n]]; a /@ Range[0, 40] (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz *) CROSSREFS Main diagonal of A239550. Sequence in context: A251749 A251763 A243083 * A010747 A318776 A036130 Adjacent sequences: A239558 A239559 A239560 * A239562 A239563 A239564 KEYWORD nonn AUTHOR Alois P. Heinz, Mar 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 23:46 EST 2022. Contains 358572 sequences. (Running on oeis4.)