login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239561
Number of compositions of n such that the first part is 1 and the second differences of the parts are in {-n,...,n}.
2
1, 1, 1, 2, 4, 8, 16, 31, 63, 125, 252, 504, 1013, 2027, 4069, 8141, 16318, 32650, 65381, 130801, 261791, 523677, 1047780, 2095796, 4192533, 8385623, 16773321, 33547917, 67100362, 134203614, 268417029, 536840509, 1073702131, 2147418493, 4294882224, 8589795592
OFFSET
0,4
LINKS
FORMULA
a(n) ~ 2^(n-2). - Vaclav Kotesovec, May 01 2014
EXAMPLE
There are 2^5 = 32 compositions of 7 with first part = 1. Exactly one of these has second differences not in {-7,...,7}, namely [1,5,1]. Thus a(7) = 32 - 1 = 31.
MAPLE
b:= proc(n) option remember; `if`(n<5, [1, 1, 3, 4, 8][n+1],
(-(n^3+3*n^2+184*n-348) *b(n-1)
+(2*n^4+23*n^3-155*n^2-166*n+3776) *b(n-2)
+(n^4+14*n^3-5*n^2+122*n+768) *b(n-3)
+(2*n^3+10*n^2-64*n-1328) *b(n-4)
-(2*n^4+28*n^3-78*n^2-272*n+2320) *b(n-5))/
(n^4+10*n^3-75*n^2-20*n+1244))
end:
a:= n-> `if`(n<7, ceil(2^(n-2)), 2^(n-2)-b(n-7)):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, i_, j_, k_] := b[n, i, j, k] = If[n == 0, 1, If[i == 0, Sum[b[n - h, j, h, k], {h, 1, n}], Sum[b[n - h, j, h, k], {h, Max[1, 2*j - i - k], Min[n, 2*j - i + k]}]]];
a[n_] := If[n == 0, 1, b[n - 1, 0, 1, n]];
a /@ Range[0, 40] (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A239550.
Sequence in context: A251749 A251763 A243083 * A010747 A318776 A036130
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 21 2014
STATUS
approved