login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239562
Numbers n such that n = concatenate(a, b) and sigma(a) + sigma(b) = sigma(n) - n.
5
39, 119, 253, 581, 1875, 2077, 14477, 15879, 17823, 100637, 160529, 232477, 251189, 286437, 506587, 552739, 605729, 806179, 1170695, 3272257, 3295289, 4085129, 4201441, 4657133, 4844701, 5625173, 8106509, 12430289, 23943721, 33857009, 41782973, 64012513
OFFSET
1,1
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..65 (terms < 3*10^9)
EXAMPLE
For n = 232477 we can consider 232477 = 2 U 32477 and sigma(232477) = 265696, sigma(2) = 3, sigma(32477) = 33216 and 265696 - 232477 = 33219 = 3 + 33216.
For n = 251189 we can consider 251189 = 25 U 1189 and sigma(251189) = 252480, sigma(25) = 31, sigma(1189) = 1260 and 252480 - 251189 = 1291 = 31 + 1260.
MAPLE
with(numtheory);
T:=proc(t) local w, x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
P:=proc(q) local a, b, c, d, i, n; for n from 1 to q do a:=sigma(n); b:=T(n);
for i from 1 to b-1 do c:=trunc(n/10^i); d:=n-c*10^i;
if sigma(c)+sigma(d)=a-n then print(n); break; fi; od; od; end: P(10^9);
CROSSREFS
Sequence in context: A244694 A008878 A249301 * A044290 A044671 A020266
KEYWORD
nonn,base,hard
AUTHOR
Paolo P. Lava, Mar 21 2014
EXTENSIONS
a(19)-a(32) from Giovanni Resta, Mar 21 2014
STATUS
approved