login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098588
a(n) = 2^n for n = 0..4; for n > 4, a(n) = 2*a(n-1) + a(n-5).
2
1, 2, 4, 8, 16, 33, 68, 140, 288, 592, 1217, 2502, 5144, 10576, 21744, 44705, 91912, 188968, 388512, 798768, 1642241, 3376394, 6941756, 14272024, 29342816, 60327873, 124032140, 255006036, 524284096, 1077911008, 2216149889
OFFSET
0,2
COMMENTS
a(n) equals the number of n-length words on {0,1,2} such that 0 appears only in a run whose length is a multiple of 5. - Milan Janjic, Feb 17 2015
FORMULA
G.f.: 1/(1-2*x-x^5).
a(n) = Sum_{k=0..floor(n/4)} Sum_{i=0..n} binomial(n-4k, i)binomial(i, k).
G.f.: G(0), where G(k)= 1 + x*(2+x^4)/(1 - x*(2+x^4)/(x*(2+x^4) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 03 2013
Lim_{n->infinity} a(n)/a(n+1) = 0.486389... is a real root of -1 + 2Z + Z^5 = 0. - Sergei N. Gladkovskii, Jul 03 2013
MATHEMATICA
CoefficientList[Series[1/(1-2*x-x^5), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, 0, 0, 0, 1}, {1, 2, 4, 8, 16}, 50] (* G. C. Greubel, Feb 03 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(1/(1-2*x-x^5)) \\ G. C. Greubel, Feb 03 2018
(Magma) I:=[1, 2, 4, 8, 16]; [n le 5 select I[n] else 2*Self(n-1) +Self(n-5): n in [1..30]]; // G. C. Greubel, Feb 03 2018
CROSSREFS
Sequence in context: A308808 A324406 A182442 * A367715 A126683 A005821
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Sep 16 2004
STATUS
approved