OFFSET
0,5
COMMENTS
Also the number of self-conjugate partitions of the n-th triangular number.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..200
EXAMPLE
The 5th triangular number is 15. Writing this as a sum of distinct odd numbers: 15 = 11 + 3 + 1 = 9 + 5 + 1 = 7 + 5 + 3 are all the possibilities. So a(5) = 4.
MAPLE
g:= mul(1+x^(2*j+1), j=0..900): seq(coeff(g, x, n*(n+1)/2), n=0..40); # Emeric Deutsch, Feb 27 2007
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i^2<n, 0,
b(n, i-1)+`if`(2*i-1>n, 0, b(n-2*i+1, i-1))))
end:
a:= n-> b(n*(n+1)/2, ceil(n*(n+1)/4)*2-1):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 31 2018
MATHEMATICA
a[n_] := SeriesCoefficient[QPochhammer[-x, x^2], {x, 0, n*(n+1)/2}];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 25 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Moshe Shmuel Newman, Feb 15 2007
EXTENSIONS
More terms from Emeric Deutsch, Feb 27 2007
a(0)=1 prepended by Alois P. Heinz, Jan 31 2018
STATUS
approved