login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126684 Union of A000695 and 2*A000695. 10
0, 1, 2, 4, 5, 8, 10, 16, 17, 20, 21, 32, 34, 40, 42, 64, 65, 68, 69, 80, 81, 84, 85, 128, 130, 136, 138, 160, 162, 168, 170, 256, 257, 260, 261, 272, 273, 276, 277, 320, 321, 324, 325, 336, 337, 340, 341, 512, 514, 520, 522, 544, 546, 552, 554, 640, 642, 648, 650 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Essentially the same as A032937: 0 followed by terms of A032937. - R. J. Mathar, Jun 15 2008
Previous name was: If A = {a_1, a_2, a_3...} is the Moser-de Bruijn sequence A000695 (consisting of sums of distinct powers of 4) and A' = {2a_1, 2a_2, 2a_3...} then this sequence, let's call it B, is the union of A and A'. Its significance, alluded to in the entry for the Moser-de Bruijn sequence, is that its sumset, B+B, = {b_i + b_j : i, j natural numbers} consists of the nonnegative integers; and it is the fastest-growing sequence with this property. It can also be described as a "basis of order two for the nonnegative integers".
The sequence is the fastest growing with this property in the sense that a(n) ~ n^2, and any sequence with this property is O(n^2). - Franklin T. Adams-Watters, Jul 27 2015
Or, base 2 representation Sum{d(i)*2^(m-i): i=0,1,...,m} has even d(i) for all odd i.
Union of A000695 and 2*A000695. - Ralf Stephan, May 05 2004
Union of A000695 and A062880. - Franklin T. Adams-Watters, Aug 30 2014
LINKS
David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
FORMULA
G.f.: sum(i>=1, T(i, x) + U(i, x) ), where
T := (k,x) -> x^(2^k-1)*V(k,x);
U := (k,x) -> 2*x^(3*2^(k-1)-1)*V(k,x); and
V := (k,x) -> (1-x^(2^(k-1)))*(4^(k-1) + sum(4^j*x^(2^j)/(1+x^(2^j)), j = 0..k-2))/(1-x);
Generating function. Define V(k) := [4^(k-1) + Sum ( j=0 to k-2, 4^j * x^(2^j)/(1+x^(2^j)) )] * (1-x^(2^(k-1)))/(1-x) and T(k) := (x^(2^k-1) * V(k), U(k) := x^(3*2^(k-1)-1) * V(k) then G.f. is Sum ( i >= 1, T(i) + U(i) ). Functional equation: if the sequence is a(n), n = 1, 2, 3, ... and h(x) := Sum ( n >= 1, x^a(n) ) then h(x) satisfies the following functional equation: (1 + x^2)*h(x^4) - (1 - x)*h(x^2) - x*h(x) + x^2 = 0.
EXAMPLE
All nonnegative integers can be represented in the form b_i + b_j; e.g. 6 = 5+1, 7 = 5+2, 8 = 0+8, 9 = 4+5
MATHEMATICA
nmax = 100;
b[n_] := FromDigits[IntegerDigits[n, 2], 4];
Union[A000695 = b /@ Range[0, nmax], 2 A000695][[1 ;; nmax+1]] (* Jean-François Alcover, Oct 28 2019 *)
PROG
(PARI) for(n=0, 350, b=binary(n):l=length(b); if(sum(i=1, floor(l/2), component(b, 2*i))==0, print1(n, ", ")))
(Haskell)
a126684 n = a126684_list !! (n-1)
a126684_list = tail $ m a000695_list $ map (* 2) a000695_list where
m xs'@(x:xs) ys'@(y:ys) | x < y = x : m xs ys'
| otherwise = y : m xs' ys
-- Reinhard Zumkeller, Dec 03 2011
CROSSREFS
Sequence in context: A105425 A199799 A032937 * A089653 A180252 A191203
KEYWORD
easy,nonn
AUTHOR
Jonathan Deane, Feb 15 2007, May 04 2007
EXTENSIONS
New name (using comment from Ralf Stephan) from Joerg Arndt, Aug 31 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 07:35 EDT 2024. Contains 373540 sequences. (Running on oeis4.)