login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062880 Zero together with numbers which can be written as a sum of distinct odd powers of 2. 24
0, 2, 8, 10, 32, 34, 40, 42, 128, 130, 136, 138, 160, 162, 168, 170, 512, 514, 520, 522, 544, 546, 552, 554, 640, 642, 648, 650, 672, 674, 680, 682, 2048, 2050, 2056, 2058, 2080, 2082, 2088, 2090, 2176, 2178, 2184, 2186, 2208, 2210, 2216, 2218, 2560, 2562 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binary expansion of n does not contain 1-bits at even positions.

Integers whose base-4 representation consists of only 0's and 2's.

a(n)=2 A000695(n). Every nonnegative even number is a unique sum of the form a(k)+2a(l); moreover, this sequence is unique with such property. [Vladimir Shevelev, Nov 07 2008]

Also numbers such that the digital sum base 2 and the digital sum base 4 are in a ratio of 2:4. - Michel Marcus, Sep 23 2013

From Gus Wiseman, Jun 10 2020: (Start)

Numbers k such that the k-th composition in standard order has all even parts. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. For example, the sequence of all compositions into even parts begins:

     0: ()            520: (6,4)          2080: (6,6)

     2: (2)           522: (6,2,2)        2082: (6,4,2)

     8: (4)           544: (4,6)          2088: (6,2,4)

    10: (2,2)         546: (4,4,2)        2090: (6,2,2,2)

    32: (6)           552: (4,2,4)        2176: (4,8)

    34: (4,2)         554: (4,2,2,2)      2178: (4,6,2)

    40: (2,4)         640: (2,8)          2184: (4,4,4)

    42: (2,2,2)       642: (2,6,2)        2186: (4,4,2,2)

   128: (8)           648: (2,4,4)        2208: (4,2,6)

   130: (6,2)         650: (2,4,2,2)      2210: (4,2,4,2)

   136: (4,4)         672: (2,2,6)        2216: (4,2,2,4)

   138: (4,2,2)       674: (2,2,4,2)      2218: (4,2,2,2,2)

   160: (2,6)         680: (2,2,2,4)      2560: (2,10)

   162: (2,4,2)       682: (2,2,2,2,2)    2562: (2,8,2)

   168: (2,2,4)      2048: (12)           2568: (2,6,4)

   170: (2,2,2,2)    2050: (10,2)         2570: (2,6,2,2)

   512: (10)         2056: (8,4)          2592: (2,4,6)

   514: (8,2)        2058: (8,2,2)        2594: (2,4,4,2)

(End)

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

D. H. Bailey, J. M. Borwein, R. E. Crandall, and C. Pomerance, On the binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux, 16 (2004), 487-518.

S. Eigen, A. Hajian, and S. Kalikow, Ergodic transformations and sequences of integers, Israel J. Math. 75 (1991), 119-128; Math. Rev. 1147294 (93c:28014).

FORMULA

From Robert Israel, Apr 10 2018: (Start)

a(2*n) = 4*a(n).

a(2*n+1) = 4*a(n)+2.

G.f. g(x) satisfies: g(x) = 4*(1+x)*g(x^2)+2*x/(1-x^2). (End)

MAPLE

[seq(a(j), j=0..100)]; a := n -> add((floor(n/(2^i)) mod 2)*(2^((2*i)+1)), i=0..floor_log_2(n+1));

MATHEMATICA

b[n_] := BitAnd[n, Sum[2^k, {k, 0, Log[2, n] // Floor, 2}]]; Select[Range[ 0, 10^4], b[#] == 0&] (* Jean-François Alcover, Feb 28 2016 *)

PROG

(Haskell)

a062880 n = a062880_list !! n

a062880_list = filter f [0..] where

   f 0 = True

   f x = (m == 0 || m == 2) && f x'  where (x', m) = divMod x 4

-- Reinhard Zumkeller, Nov 20 2012

CROSSREFS

Except for first term, n such that A063694(n) = 0. Binary expansion is given in A062033.

Interpreted as Zeckendorf expansion: A062879. A062880[n] = 2*A000695[n]

Central diagonal of arrays A163357 and A163359.

Even partitions are counted by A035363.

Numbers with an even number of 1's in binary expansion are A001969.

Numbers whose binary expansion has even length are A053754.

All of the following pertain to compositions in standard order (A066099):

- Length is A000120.

- Compositions without even parts are A060142.

- Sum is A070939.

- Product is A124758.

- Strict compositions are A233564.

- Heinz number is A333219.

- Number of distinct parts is A334028.

Sequence in context: A247592 A102943 A327988 * A066707 A107227 A188539

Adjacent sequences:  A062877 A062878 A062879 * A062881 A062882 A062883

KEYWORD

nonn,easy

AUTHOR

Antti Karttunen, Jun 26 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 08:05 EDT 2021. Contains 347556 sequences. (Running on oeis4.)