login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 + x^k)^(d(k)-1), where d(k) = number of divisors of k (A000005).
1

%I #7 Apr 03 2019 02:55:54

%S 1,0,1,1,2,2,5,4,8,10,15,17,29,31,48,60,81,99,143,167,231,287,374,460,

%T 615,740,964,1194,1512,1856,2379,2877,3635,4460,5540,6759,8433,10192,

%U 12608,15335,18774,22726,27868,33525,40863,49292,59652,71694,86780,103818,125118,149778,179608

%N Expansion of Product_{k>=1} (1 + x^k)^(d(k)-1), where d(k) = number of divisors of k (A000005).

%C Convolution of A081362 and A107742.

%C Weigh transform of A032741.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F G.f.: Product_{k>=1} (1 + x^k)^A032741(k).

%F G.f.: exp(Sum_{k>=1} (sigma_1(k) - 1)*x^k/(k*(1 - x^(2*k)))), where sigma_1(k) = sum of divisors of k (A000203).

%p with(numtheory): a:=series(mul((1+x^k)^(tau(k)-1),k=1..100),x=0,53): seq(coeff(a,x,n),n=0..52); # _Paolo P. Lava_, Apr 02 2019

%t nmax = 52; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[0, k] - 1), {k, 1, nmax}], {x, 0, nmax}], x]

%t nmax = 52; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, k] - 1) x^k/(k (1 - x^(2 k))), {k, 1, nmax}]], {x, 0, nmax}], x]

%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (DivisorSigma[0, d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 52}]

%Y Cf. A000005, A000203, A032741, A081362, A107742, A318783.

%K nonn

%O 0,5

%A _Ilya Gutkovskiy_, Sep 04 2018