login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320780
Inverse Euler transform of the sum-of-divisors or sigma function A000203.
11
1, 2, 1, 0, -3, 1, -1, 1, 3, -5, -1, 4, 3, -3, -7, 8, 1, -9, 7, 8, -13, -12, 27, 7, -19, -14, 11, -17, -25, 198, -81, -312, 89, 326, 325, -739, -275, 572, -255, 1287, -453, -2062, -583, 2155, 5985, -6725, -6661, 6968, 3045, 3876, -7205, -2773, -5447, -4902
OFFSET
1,2
COMMENTS
The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n).
MAPLE
# The function EulerInvTransform is defined in A358451.
a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-SumOfDivisors(n, 1))):
seq(a(n), n = 1..54); # Peter Luschny, Nov 21 2022
MATHEMATICA
EulerInvTransform[{}]={}; EulerInvTransform[seq_]:=Module[{final={}}, For[i=1, i<=Length[seq], i++, AppendTo[final, i*seq[[i]]-Sum[final[[d]]*seq[[i-d]], {d, i-1}]]];
Table[Sum[MoebiusMu[i/d]*final[[d]], {d, Divisors[i]}]/i, {i, Length[seq]}]];
EulerInvTransform[Table[DivisorSigma[1, n], {n, 30}]]
CROSSREFS
Cf. A000203.
Sequence in context: A335435 A363048 A262114 * A029312 A287352 A243715
KEYWORD
sign
AUTHOR
Gus Wiseman, Oct 22 2018
STATUS
approved