login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse Euler transform of the sum-of-divisors or sigma function A000203.
11

%I #12 Nov 21 2022 08:12:59

%S 1,2,1,0,-3,1,-1,1,3,-5,-1,4,3,-3,-7,8,1,-9,7,8,-13,-12,27,7,-19,-14,

%T 11,-17,-25,198,-81,-312,89,326,325,-739,-275,572,-255,1287,-453,

%U -2062,-583,2155,5985,-6725,-6661,6968,3045,3876,-7205,-2773,-5447,-4902

%N Inverse Euler transform of the sum-of-divisors or sigma function A000203.

%C The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n).

%H OEIS Wiki, <a href="https://oeis.org/wiki/Euler_transform">Euler transform</a>

%p # The function EulerInvTransform is defined in A358451.

%p a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-SumOfDivisors(n, 1))):

%p seq(a(n), n = 1..54); # _Peter Luschny_, Nov 21 2022

%t EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];

%t Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];

%t EulerInvTransform[Table[DivisorSigma[1,n],{n,30}]]

%Y Cf. A000203.

%K sign

%O 1,2

%A _Gus Wiseman_, Oct 22 2018