login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of multisets of exactly four partitions of positive integers into distinct parts with total sum of parts equal to n.
2

%I #7 Dec 14 2020 05:14:01

%S 1,1,3,5,11,18,34,55,96,152,248,386,607,921,1405,2092,3112,4551,6635,

%T 9545,13683,19401,27393,38346,53441,73928,101840,139398,190020,257601,

%U 347836,467381,625686,833917,1107547,1465136,1931754,2537747,3323490,4338012,5645645

%N Number of multisets of exactly four partitions of positive integers into distinct parts with total sum of parts equal to n.

%H Alois P. Heinz, <a href="/A320789/b320789.txt">Table of n, a(n) for n = 4..1000</a>

%F a(n) = [x^n y^4] Product_{j>=1} 1/(1-y*x^j)^A000009(j).

%p g:= proc(n) option remember; `if`(n=0, 1, add(add(`if`(d::odd,

%p d, 0), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)

%p end:

%p b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,

%p add(b(n-i*j, i-1)*x^j*binomial(g(i)+j-1, j), j=0..n/i))), x, 5)

%p end:

%p a:= n-> coeff(b(n$2), x, 4):

%p seq(a(n), n=4..60);

%t g[n_] := g[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* g[n - j], {j, 1, n}]/n];

%t b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*x^j*Binomial[g[i] + j - 1, j], {j, 0, n/i}]]], {x, 0, 5}];

%t a[n_] := SeriesCoefficient[b[n, n], {x, 0, 4}];

%t a /@ Range[4, 60] (* _Jean-François Alcover_, Dec 14 2020, after _Alois P. Heinz_ *)

%Y Column k=4 of A285229.

%Y Cf. A000009.

%K nonn

%O 4,3

%A _Alois P. Heinz_, Oct 21 2018