login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244473
3rd-largest term in n-th row of Stern's diatomic triangle A002487.
5
1, 3, 5, 11, 18, 30, 49, 80, 129, 209, 338, 547, 885, 1432, 2317, 3749, 6066, 9815, 15881, 25696, 41577, 67273, 108850, 176123, 284973, 461096, 746069, 1207165, 1953234, 3160399, 5113633, 8274032, 13387665, 21661697, 35049362, 56711059, 91760421
OFFSET
2,2
LINKS
Jennifer Lansing, Largest Values for the Stern Sequence, J. Integer Seqs., 17 (2014), #14.7.5.
FORMULA
a(n) = a(n-1)+a(n-2) for n>9. - Colin Barker, Jul 10 2015
G.f.: -x^2*(x^7+x^6+x^5+2*x^4+3*x^3+x^2+2*x+1) / (x^2+x-1). - Colin Barker, Jul 10 2015
MAPLE
A244473 := proc(n)
if n < 8 then
op(n, [-1, 1, 3, 5, 11, 18, 30]) ;
else
combinat[fibonacci](n+1)+5*combinat[fibonacci](n-4) ;
end if;
end proc:
seq(A244473(n), n=2..50) ; # R. J. Mathar, Jul 05 2014
MATHEMATICA
Join[{1, 3, 5, 11, 18, 30}, LinearRecurrence[{1, 1}, {49, 80}, 40]] (* Harvey P. Dale, Jan 13 2015 *)
PROG
(PARI) Vec(-x^2*(x^7+x^6+x^5+2*x^4+3*x^3+x^2+2*x+1)/(x^2+x-1) + O(x^100)) \\ Colin Barker, Jul 10 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 01 2014
STATUS
approved