Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jul 10 2015 08:44:00
%S 1,3,5,11,18,30,49,80,129,209,338,547,885,1432,2317,3749,6066,9815,
%T 15881,25696,41577,67273,108850,176123,284973,461096,746069,1207165,
%U 1953234,3160399,5113633,8274032,13387665,21661697,35049362,56711059,91760421
%N 3rd-largest term in n-th row of Stern's diatomic triangle A002487.
%H Colin Barker, <a href="/A244473/b244473.txt">Table of n, a(n) for n = 2..1000</a>
%H Jennifer Lansing, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Lansing/lansing2.html">Largest Values for the Stern Sequence</a>, J. Integer Seqs., 17 (2014), #14.7.5.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).
%F a(n) = a(n-1)+a(n-2) for n>9. - _Colin Barker_, Jul 10 2015
%F G.f.: -x^2*(x^7+x^6+x^5+2*x^4+3*x^3+x^2+2*x+1) / (x^2+x-1). - _Colin Barker_, Jul 10 2015
%p A244473 := proc(n)
%p if n < 8 then
%p op(n,[-1,1,3,5,11,18,30]) ;
%p else
%p combinat[fibonacci](n+1)+5*combinat[fibonacci](n-4) ;
%p end if;
%p end proc:
%p seq(A244473(n),n=2..50) ; # _R. J. Mathar_, Jul 05 2014
%t Join[{1,3,5,11,18,30},LinearRecurrence[{1,1},{49,80},40]] (* _Harvey P. Dale_, Jan 13 2015 *)
%o (PARI) Vec(-x^2*(x^7+x^6+x^5+2*x^4+3*x^3+x^2+2*x+1)/(x^2+x-1) + O(x^100)) \\ _Colin Barker_, Jul 10 2015
%Y Cf. A002487, A244472-A244476.
%K nonn,easy
%O 2,2
%A _N. J. A. Sloane_, Jul 01 2014